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Gravitational Decoherence and EPR Correlations
Z. Habal
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It is shown that gravitons in a mixed (thermal) state can lead to a decoherence in large
guantum systems. As a consequence the nonlocal Einstein—Podolsky—Rosen phenom-
ena resulting from quantum coherence can disappear in some particle states after a
guantization of Einstein gravity.

1. INTRODUCTION

Quantum coherence leads to remarkable phenomena of an immediate change
of a state of a distant subsystem entangled with another subsystem undergoing
a measurement (the Einstein—Podolsky—Rosen paradox (Eiretteiy 1935),

EPR for short). In general, if the system is not closed, an effect of measurement
on a small part of it will spread over all constituents. As a consequence, it can
be negligibly small for large distances. The influence of an environment on the
coherence has been discussed in Zurek (1982) and 8teah (1990). In this

paper we consider an environment of quantized gravitational waves (decoherence
resulting from the quantum gravity at zero temperature has been discussed also in
Ellis etal.(1989) and Anastopoulos (1996)). Then, we discuss the EPR experiment
of measuring a momentum of one of two particles in an entangled state. It is
shown that owing to the disappearance of the coherence the momentum of the
distant second particle remains undetermined. One could interprete the effect of an
indeterminate momentum either as a description of quantum system by dissipative
dynamics or as a result of scattering by gravitons in a Hamiltonian system. The
effect is small for elementary particles. Then, we would have to wait for a long
time before the coherence is lost. However, the decoherence rate for a cluster
of N particles increases at least linearly with Hence, it becomes efficient for
macroscopic bodies.
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We consider a semiclassical (complex) solution of the Klein—Gordon equation
Og¥r = M%c?yr 1)
where
Og = " 9,9, + 9"’ T's0,

g"" is the Riemannian metric ari; are the Christoffel symbols.
In the semiclassical approximation we write

Y = exp('EW)¢> 2)
Then, Eq. (1) in the leading order bfgives equations foW and¢
-9’8, W3,W = M?c? ()
and
9", Wd,¢ =0 4)
We consider a perturbation of the metric around the flatgtie= (1, 1, 1,—1)
g"’ =" 4 22" (5)
We solve Eq. (3), the Hamilton—Jacobi equation, perturbativedy in
W =wO 1 wt) (6)
where the zeroth order er{(N(O)) describes the plane wave, that is,
WO = px 7)
with P2 = —M?2c?. The equation foiW® reads
a9, WOy, WO 4 vy WOy wl) = 0o (8)

We choose the transverse-traceless gauge.for such a case has only spatial
components. Then, the solution of Eq. (8) is
X

0 .
WO (xo, X) = Po‘lf all(xg — 7, x + TP/Po)P; A dt (9)

0

Eq. (4) can be considered as a transport equatio.ilis solution is determined
by the solutiorg(xp, X) of the equation

dal .
S = oA, W) (10)

In the zeroth order i (which will be sufficient for our purposes)

d(Xo, X) = X+ XoP/Po (11)
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2. QUANTIZATION OF GRAVITATIONAL WAVES

We quantize the gravitational waves expandinigp the momentum space

aB(x) = VAmcy/hic/cA(2m) %2 [ dk k|2 explkx) Y (ea(¢, K)C(Z, k)

. =12
x exp(—ilk|xo) + €5(¢, K)C(¢, k)™ exp(|k|xo)) (12)
where
[C(¢, k), C(¢, K)F] = 8r8(k — K') (13)

are the creation and annihilation operators. The normalization constants in Eq. (12)
come from the classical action integral (entering the functional integral), which is
¢! [ /—det@)R, wherex = 87 G andG is the Newton constant.

The Hamiltonian is

R = / dk ;cuqce, K)*C(z. k)

If the gravitational radiation is in equilibrium with light and matter, then it should
be described by the Gibbs distribution (the Planck black body law)

pg = Z ' exp(-BHR)

where% = KT, K is the Boltzmann constant afiddenotes the temperature.

There may be some deviations from the Planck distribution in cosmological
models (see Grishchuk (1989); however, there are also arguments in favor of the
Planck distribution of the relic gravitational radiation (Weinberg, 1972, 1988;
Parker, 1976). We consider a more general density mafiig) as a function of
the graviton energyig. We introduce a parametefld as an energy cutoff. In the
Gibbs state we obtain the Planck distribution

f5 (helk]) = (C*(K)C(K))s = (exp(schlk]) — 1)~ (14)

We can see that effectively/ g plays the role of the energy cutoff in the Planck
distribution. We shall sometimes identifywith g in our discussion.
The correlation functions ai (12) can be computed in the Fock space

Tr(ed(t, x)a2 (0,%)p) = Gp(x, X'; )32

he / aaa (K) cosk(x — X))

T 272¢3

X <<% + fb(hc|k|)> cosglk]t) — > sin(c|k|t)>
(15)
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where

spa(k) = " ef(k, 0)ed(k, ¢) (16)
¢

We assume the transverse-traceless gauge.fohis means that we can choose
only spatial components afdifferent from zero. In such a cadék) has the form
(see Weinberg (1965) and Rubakov (1982))

835(K) = 525D + 58" — 5251 (17)

where
gac(k) = 8ac — kakc/k2

The form (17) ofs is determined by the conditiomkgs2d(k) = 0, §29(k) = 0, and
5b<:(k)

In Eq (15) f, is the graviton distribution. Our results for small time and smalll
space separations do not depend essentially on the forfinibf

fo(k) = f(bK)

and if f decays sufficiently fast, for examplef (k)| < Ak for a largek. For
large time and large space separations the results depend on the singulfity of
atk = 0. Some singular distributions in inflationary models are discussed in Allen
(1988), Allen and Romano (1999), de Garcia Maia (1993), and Sahni (1990).

An expectation value in the vacuupis a special case of Eq. (15) corre-
sponding to the limib — oo

oo(X, 1%, 0) =< yler(t, X)ex(0, X)X >

:/(c‘4 he /d — cosk(x — X)) exp(=iclk|t)  (18)

We can see from Egs. (15) and (18) that the first term on the r.h.s. of Eq. (15) de-
scribes the zero point density (vacuum fluctuations), whereas the seconfjpne (
comes from the thermal gravitons in equilibrium with the environment. In gen-
eral, the vacuum fluctuations cannot be neglected. After a renormalization they
contribute to measurable effects. However, we show in the Appendix that renor-
malized vacuum fluctuations give a negligible contribution to the decoherence. We
subtract the vacuum fluctuations in Eq. (15) definiyg = G — G. After this
subtraction the correlation function becomes real. We can define a real random
field « with the correlation function

(e (X)a§ (X)) = Gin(x — X5
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where
Gin(x — X)S = hxc’3(2n)’2/dk lk|~1825(k) cosk(x — x'))
x cos(f&o — Xo)IKI) fo(clk|h) (19)

The random fieldr is Gaussian in a linear approximation to gravity.

3. DECOHERENCE

Gravitons interact with all particles. There is no screening of the gravitation
force. Hence, the eventual decoherence effect of gravitons will be universal. We
define the partial density matrix (averaged over the gravitons)

pr(%, X') = Trr((XIp(HR) Y1) (Y1 | X)) (20)

We takeyr in the form (2), wherep is a slowly varying function. Hence, in
the leading order i neglecting the dependencedfx) on «

00 = 1109 = exf W ) x — xoP/ P (21)
wherexg = ct ande(xo, X) = G(x — XoP/Po) is the solution of the Klein—Gordon

equation with the initial conditiow. The average over gravitons takes the form
(we skip the tilde ovep)

pe(x, X') = exp(—=S(P)) exp( P (x — x')/h)¢ (x - PXFZ)¢<X/ - p_>
= exp(iP(x — x)/h) qb(x — P)I;_Z)q;(xf _ PXFZ)

1 ° ay cd s—s / b
x exp| "Rz o PeR.GS) 5 P,s—s |P°Pydsds

0
ct

1
4o [ PG K~ X — (5- $)P/Pus — $)PyPPds s
2n2R2 Jo

b |
2h?P2 Jo

The form of the Green'’s function comes from

ct

PaP.GS(X — x — (s — S)P/Py, s — §)P4PPds dé)

(22)

((az, ), 7) ela(s, X), ) = G(x X+ TR s) (23)



990 Haba

The trace in Eqg. (21) can be calculated as an expectation value over the
Gaussian random field (or expressed in the operator formalism by means of the
time-ordered products in the Fock space)

1
(expiad) = exp(— EJGJ)

where the Green functior@ depend on the state under consideration (See Haba
and Kleinert, 2001). In particular, in the thermal state with subtracted vacuum
fluctuations,G — Gu. With vacuum fluctuationsGy — Gg = G + G and
the time-ordering leads subsequently to the replace@ent> Gg =i Ag (in
the notation of Bjorken and Drell, 1965). The pdrG dy dy contains infinities
when the paths intersect. After a renormalization the remaining expression gives
a negligible contribution to the decoherence (see the Appendix).

If there areN particles then

N
W) = 3 (P(j)x(j) i %P(i)cP(J)a

x /Od ag(X(j) + SP(j)Po(j) 4 ct —s) dS)

and the density matrix evolves as follows

N
pi(x, X) = exp(=S(P)) exp (i Y PU(G) - X/(J'))/h>

i=1

Xo , Xo
<o(x-PR)o(x-P%)

. N . . I Xo , Xo
— exp(i 3" P(IXG) - X (i))/h ¢>(x _ Pgo)qs(x - PE)

i=1

ct N
xexp(—z—:]z /0 3 PG)*P()cPo(j)

j k=1
 (G8(X) ~ X+ 5Pl — s Ps =9
+ 68 (X(1) X0 + 5 1Pl) = P =9

() — x(19 + —SP(i) — P, s
GE5(X(1) = 9+ ssP) — P55
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GS%(X(J)—X(kH ()P(J) PS(k)P(k)s—s>>

x PP(K)Py(k)Po(k)~ ds dé) (24)

wherex — xgP/ Py under the argument af is understood as a vector with com-
ponentsk(j) — XoPj)/ Po(])-

Let us first consider a single particle and assume ttismall so that we
can neglect the integration oveands’ inside the cosine. Let us chooBes the
z-axis and denote the coordinatesxof X' = y = (coswx sint, sina sinw, cost).
Then, withk = |k|(cos¢ sing, sing sind, cosy)

ct
PP (/ Gin((s —S)P/Py, s —s)dsds
0
1 t
_5/ Gin(Xx —X + (s—8)P/Py,s—s)ds ds
0

1 t
_5/ Gi(X' — X+ (s—8)P/Py,s—95)ds dé) PP
0

= t?PP(G(0, 0)— G(y, 0))PP

o) 1 2 T
= |P|*hkc™3t%x —2/ dkk/ da/ dqs/ do sind1 (0)
0 0 0

x (1 — coskaly|®)) f (bhck) (25)
where

® = cos¢ sind cosw SinY + sing sind sina siny + cosy cosy (26)
and
1(0) = |P|"4(P? — (Pk)’k?)2 = (1 — cog 0)?
For smally the integration ovey gives
/d¢ 0% = %(sinzﬁ1 +cog ¥ cosh)
Hence, expanding iy we obtain

_2
pr(x,X) = exp( —(A+Bsi? ﬁ)(%) 152 — x’|2(LpL/ldB>2(Pt/M)2)
27)
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whereA > 0 andB > 0 are constants of order [,z = hcbis de Broglie length
at temperatur@ (for b = ). Then, Pl is particle’s wave length at the momentum
P, LpL = +/hi/c3 is the Planck length.

For N particles ift is small and the difference in coordinates in Eq. (24) is
small then expanding ihand in the coordinates we obtain (assumifg~ Mc)

pi(x, X) = exp S(P)) eXp( > PU)X() - x (J))/h)

j=1

Xo , Xo
<o(x-rR)o(x-P%)

N
- eXp<i > (P = ()Mo (x - PR Jo(x - PR )

=1
2

x exp( T2 Z ((x(1) =x1)y (P()), PANX(I) — (1))

=1
+ (1) = XO)y (PG, PO)K(G) —X(1)
+ X'(5) = x()y (P(j), PO)X(J) — x(1))
+ (1) =X O)y (P(), PO)X(G) — X )))) (28)
where
x(5) = x(1)y (P(}), PO)X(1) — (1))
= /dk kI~ fo(chk)(k(x() — x(1)))*P())P()S(K)P(j)P(1)

The formula simplifies if all the momenta are equal (and nonrelativistic Hgex
Mc) then

N AN L X0 %o
(%, X) = exp<|P SCORE (1))/h) ¢><x - P;O)qs(x _ PFO)

t2 N _ _ )
x exp(—th—MzCzW j,kzzl((“ B sir? ) IX(j) — x(K)|

+(A+ B sir? 91X (j) = X (K)[? + (A + B sir? 9,)x'(j) — x(k)|?

+ (A + B sir® vy)Ix(j) — x/(k)|2)> (29)
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whered j is the angle betweeR andx(j) — x(k), 97 is the angle betweeand
X'(j) — X'(k), anddj, is the angle betweel andx(j) — x'(k).

To obtain a simple bound on the density matrix (29), let us assume addi-
tionally that the particles have approximately the same posktiph= x(k) = x
andx/(j) = X'(k) = x'. One can achieve this by choosing in the formula

= (Trp) ' Tr(pA)
the observabl@, which is of the formy >< x| with

Then, we obtain the bound

Xo , Xo
¢<X‘Pﬁo>¢<x ‘F’Fo)’

exp<— W|P|4(A+Bsm2ﬁ)|x x|2>

loe(X, X)| <

For a large time and large — x| we can obtain explicit formulas fdBy, if
y = Xx — X'||P. We apply Eg. (22) and the formula

1
A lsinA= / da cos@A)
0

We perform the integral over time first. Then, for nonrelativistic momenta

k T
- 4 ;
S(P) = 2|P| M2h P / / /0 do sind1 () fo(hck)
x (2(1— cosfck)) — 2 coska costly|)
+ coska cost|y| + ckt) + cos(—ka cosf|y| + ckt)) (30)

Forct > |y| we can neglect the terms withunder the cosines in Eq. (30). There

remains
e [aa [T

x sind 1 (0) f (bhckK)(1 — coska cosh|yl)). (31)

If ly| <« lgg is small andP| is small in comparison t¥ic (andt is large) then the
integral (31) gives

pr(x, X) ~ exp(—AM~2c ?h2|P*LE I 751x — X|?) (32)

with a certain constar of order 1.
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For a small timé and a larggy| we omit the terms witly in the integral (30).
There remains

SP) = 4|P|4m—/ / dk /nde sing1(0) f,(hck)(1 — costck))
0

Hence, forly| > Igg > ct we obtain
h 72
o exp{ — AlLe/loe( ) (PUM?) 33)

Let us consider the largly/| in EqQ. (30) assuming thatis also large. Now,
the behaviour ofS(P) for a large time depends essentially on the energy dis-
tribution. We restrict the discussion to the Planck distribution. We apply the
formula

1

1—cosw = w/ dy sin(yw)

0

and the formula 3.911 of Gradstein and Ryzhik (1971)

/00 dusin(au)(eXp(Bu) _ ]_)*1 — l COth(n—a> _ i
0

For |y| > ct > lqg we neglect the oscillatory terms dependingyorThen, we
obtain

ct K 1 00 b4
P)=2 P|*=h /d / dk/ dé sing 1 (6
S(P) I\/|2r12|I(:L1/71()J/() A )

x sin(tcky )(exp@Bhck) — 1)1

1
= 5h2|P|4h/ / dy (— coth(j;)r:) - ;)

. K 4 ,B_h mt
= V2 5hz|P| h/x In<nt Smh(ﬂh))

P P2
~ o P pslt o IPIT

M2c5 g PL M2¢3

(h|Prl)*2% (34)

For ct > |y| > lgg and intermediatgy| we neglect the terms withunder the
difference of cosines in Eg. (30). There remains

1 o' b4
K 4 dk .
Ithlpl h/ﬂfo da/O ?/O dé sind 1 (9)
x (exp@hck) — 1)~1(1 — coska cosdly|)) (35)

S(P) =2¢°
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Then, thek-integral gives

1 1 n
4
= Shz|P| h/c:r/ (/0 dyfo dcosf1(6)
. (Tacosdlyl . (macosdlyly) 1
Bhc Bhc Y

/ dcost | (0) cosd ||y|

hip-y-2 36

for a largely| such thatt > |y| > lgg.
If (asin Eq. (34))
pi(x, X) =~ exp(P(x — x)/h) — at|P|*)

then
atp = _a[P2| [Pza p]]
with
_¢c L§
"~ lgg h?M2c2

This could be a version of a primary state diffusion equation (Diosi, 1989; Milburn,

1991; Percival and Struntz, 1997) causing decoherence and the wave function

reduction. In our interpretation the diffusion results from the gravitational

background (for a detailed study of this equation see Haba and Kleinert, 2001).
Note that the formula (34) comes out from the approximation

clL3
Gin(x,X,s—5) = I—PLS(S -9)
dB

which could have been justified by an approximatign ~ Id‘Bl. If o is approxi-
mated by the white noise then Eq. (1), the Klein—Gordon equation, takes the form
of a random Scludinger equation (with the Ansa’({z = exp(Px/h)¢)

I~ VO O N 3
o ShM ® PLhMOl iPé

whereP = —ihV.

Note that without the assumptioh~ 1/k for smallk (true for the Planck
distribution) we would not obtain Eq. (34) but rathé&r Then, there would be no
diffusion equation.

For real systems there are stronger sources of the decoherence than the grav-
itational one, for example, a scattering on relic photons, sun photons, and air
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molecules. However, in principle we can screen a system against these distur-
bances. The gravitons effect is universal, with no possibility of screening. It is
small for elementary particles but as we have shown, the decoherence rate increases
at least ad\ for a cluster ofN particles so it becomes efficient for macroscopic
bodies. We suggest that the gravitational decoherence could be used as a universal
mechanism explaining the emergence of the classical world from the quantum
microphysics.

4. THE DISAPPEARANCE OF THE ENTANGLEMENT

We consider the Einstein—Podolsky—Rosen wave function of two particles (Einstein
et al.(1935) and Cohen (1997))

(1), X(2) = expf [ PAX(D)+ [P - (1) - XD - 8/2¢) @)
This function approximates ERRfunction where — 0. In the momentum space
Tk, k() = 3(PW) + P(R) — k(1) ~ k(2)
< oxp((~ oK) - PP + (P~ k(D) (38)

Hence, a measurementkifl) determine&(2) = —k(1) + P(1) + P(2).

We prepare the state (37)tat 0 and calculate its time evolution in the en-
vironment of gravitons (that remain unobserved). As a result we obtain the mixed
statep;. For an interpretation of this mixed state it is useful to define the Wigner
function (Wigner, 1932)

Wi(k(1),k(2);a(1), q(2))

= (2rh)~® [dy(1)dy(2)pe(q +y/2, 0~ y/2) exply(1k(1)/ h +iy(2)k(2)/ h)

(39)
At t = 0 we have

WD), k(5a(1),9(2)
= (@re) ¥ exp( ~(a(1) - 6@) - 8% ) x 5(P() + P(2) ~ K(D) - k(2)

If we insert the result (29) (for two particles) into Eq. (39)

2
=~ exp{ ~ 3007+ y(2P)
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with a (momentum-dependerit)determined by Eq. (29), then we obtain
Wi(k(1), k(2);9(1), a(2))
— (2re) 7 exp{ - (A1)~ a(2) - (P~ P@)y; — a2 2t/ 1) 52

x exp(—%(P(l) +P(2) — k(1) - k(z))z) exp( - %(; * g)_l

x (P(1) = P(2) — k(1) + k(2))2> (40)

The result (40) means that the quantum coherence is lost iriRI& after
the state preparation. From Eq. (29) it follows that: 1/+/N; hence, the decoher-
ence time can be short for a latyeThe measurement &{1) allows to determine
k(2) with an unavoidable error that grows with time (hence also with the space
separation of particles). The error has a nonzero lower bound and a finite upper
bound, because according to Eq. (34) the decay; f, X') as|x — X'| - oo is
time independent.
APPENDIX

When the operator formalism is applied, then the formula (22) results from a
representation of the density matrix expectation values by the expectation values of
the time-ordered products of quantum fields in the Fock space. We use the following
conventions of Bjorken and Drell (1965) flenotes the time-ordered product)

(OIT ((X)(x))10) = i AR(X — X)
(0| T (exp(J@))|0) = exp( — IEJAFJ>
Then, in our notation
Gr(X' — X) =i Ap(X' — X)
In terms of Fourier integrals
Ap(X —X) = —i %(Zn)’S/dk Ik|~tcosk(x' — x)) exp(=iclk||t’ — t])

We perform calculations with an ultraviolet cutaff. Then, we obtain (for sim-
plicity of the formulas we make an approximati®/Mc >~ 1)

1 t
S = ZWPF)(/O Ge((s— 1)P/M,s—1t)ds

t
—/ GE(x—X +(s—1)P/M,s—1)dsdr
0
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- /t GF(x/—x+(s—r)P/M,s—r)dsdr)>PP
0

= hc%(Zn)‘3(—i)ct / dk (P? — (Pk)%k2)?
x (€?[k[® — (PK)*/M?) (1 — cosk(X' — X))
+hc%(2n)‘3/dk(P2 — (PK)%k~2)?|k|~Y((c|k| + Pk/M)~2

x (1 — exp(=it(clk| + Pk/M)))
+ (c|k| — Pk/M)™2(1 — expit (c|k| — Pk/M)))(1 — cosk(X' — X)) (41)

With an ultraviolet cutoffk| < A on the wave numbefrexp(— S(P))| behaves as
follows: If tis large andx — x| small (A|x — x| < 1/2) then

lexp(—S=(P))| ~ exp(-alx — X'|?)
If [x — x| is large and small (ct|A < 1/2) then
lexp(—S:(P))| ~ exp(-alt|’)
If botht and|x — X’| are small then
|lexp(=S=(P))| ~ exp(-a’[t||x — x'|?)

However, in these formulas~ A?. Hence, such a behaviour would be valid only

for a very smallt or |x — x/|. In fact, the cutoff sets a length scake? within

which the variation of time and space coordinates should be considered. Beyond
this scale the real variation & is logarithmic. We can see this from the integral
entering the formula (39)

A dk Ldk A dk
/ — (1 — cosckt) = / — (1 — cosk) + / — (1 — cosk)
o k o Kk .k
= const+ In(ctA) (42)

Hence, the variation of: is slow in comparison to the black body p&t{that
behaves in the same way but for larger time and space intervals). It follows that
the termal parGy, of the Green’s function determines the leading behaviour of
the density matrix.

Ifthe ultraviolet cutoffis removed and an infinite constantindependeiairaf
X is subtracted then the remaining part of exfj varies slowly (logarithmically)
for largert and|x — x/|.

It is sometimes suggested that quantum gravity sets an ultraviolet cutoff
k < 1/Lp., thatis,A = 1/Lp.. Insuch a case the part corresponding to the zero-
temperature Green’s functiddg determines the behaviour of the density matrix
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only for [x — X'| < Lp_ andc|t| < Lp,. At finite temperature the thermal Green'’s
function behaves in the same way for a larger space and time intervals determined
by l4g, which becomes the relevant length scale for decoherence.
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