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Gravitational Decoherence and EPR Correlations
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It is shown that gravitons in a mixed (thermal) state can lead to a decoherence in large
quantum systems. As a consequence the nonlocal Einstein–Podolsky–Rosen phenom-
ena resulting from quantum coherence can disappear in some particle states after a
quantization of Einstein gravity.

1. INTRODUCTION

Quantum coherence leads to remarkable phenomena of an immediate change
of a state of a distant subsystem entangled with another subsystem undergoing
a measurement (the Einstein–Podolsky–Rosen paradox (Einsteinet al., 1935),
EPR for short). In general, if the system is not closed, an effect of measurement
on a small part of it will spread over all constituents. As a consequence, it can
be negligibly small for large distances. The influence of an environment on the
coherence has been discussed in Zurek (1982) and Sternet al. (1990). In this
paper we consider an environment of quantized gravitational waves (decoherence
resulting from the quantum gravity at zero temperature has been discussed also in
Ellis et al.(1989) and Anastopoulos (1996)). Then, we discuss the EPR experiment
of measuring a momentum of one of two particles in an entangled state. It is
shown that owing to the disappearance of the coherence the momentum of the
distant second particle remains undetermined. One could interprete the effect of an
indeterminate momentum either as a description of quantum system by dissipative
dynamics or as a result of scattering by gravitons in a Hamiltonian system. The
effect is small for elementary particles. Then, we would have to wait for a long
time before the coherence is lost. However, the decoherence rate for a cluster
of N particles increases at least linearly withN. Hence, it becomes efficient for
macroscopic bodies.
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We consider a semiclassical (complex) solution of the Klein–Gordon equation

hgψ = M2c2ψ (1)

where

hg = gµν∂µ∂ν + gαβ0ναβ∂ν

gµν is the Riemannian metric and0ναβ are the Christoffel symbols.
In the semiclassical approximation we write

ψ = exp

(
i

h
W

)
φ (2)

Then, Eq. (1) in the leading order ofh gives equations forW andφ

−gµν∂µW∂νW = M2c2 (3)

and

gµν∂µW∂νφ = 0 (4)

We consider a perturbation of the metric around the flat oneηµν = (1, 1, 1,−1)

gµν = ηµν + 2αµν (5)

We solve Eq. (3), the Hamilton–Jacobi equation, perturbatively inα

W = W(0)+W(1) (6)

where the zeroth order exp (i
h W(0)) describes the plane wave, that is,

W(0) = Px (7)

with P2 = −M2c2. The equation forW(1) reads

αµν∂µW(0)∂νW
(0)+ ηµν∂µW(0)∂νW

(1) = 0 (8)

We choose the transverse-traceless gauge forα. In such a caseα has only spatial
components. Then, the solution of Eq. (8) is

W(1)(x0, x) = P−1
0

∫ x0

0
α j l (x0− τ, x+ τP/P0)Pj Pl dτ (9)

Eq. (4) can be considered as a transport equation inx0. Its solution is determined
by the solutionq(x0, x) of the equation

dqj

dx0
= gjk∂kW(g0µ∂µW)−1 (10)

In the zeroth order inα (which will be sufficient for our purposes)

q(x0, x) = x+ x0P/P0 (11)
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2. QUANTIZATION OF GRAVITATIONAL WAVES

We quantize the gravitational waves expandingα in the momentum space

αb
a(x) = √4πc

√
hκ/c4(2π )−3/2

∫
dk |k|−1/2 exp(i kx)

∑
ζ=1,2

(
εb

a(ζ, k)C(ζ, k)

× exp(−i |k|x0)+ εb
a(ζ, k)C(ζ, k)+ exp(i |k|x0)

)
(12)

where

[C(ζ, k), C(ζ ′, k′)+] = δζζ ′δ(k − k′) (13)

are the creation and annihilation operators. The normalization constants in Eq. (12)
come from the classical action integral (entering the functional integral), which is
c4κ−1

∫ √−det(g)R, whereκ = 8πG andG is the Newton constant.
The Hamiltonian is

HR =
∫

dk
∑
ζ

c|k|C(ζ, k)+C(ζ, k)

If the gravitational radiation is in equilibrium with light and matter, then it should
be described by the Gibbs distribution (the Planck black body law)

ρ̂β = Z−1 exp(−βHR)

where 1
β
= KT, K is the Boltzmann constant andT denotes the temperature.

There may be some deviations from the Planck distribution in cosmological
models (see Grishchuk (1989); however, there are also arguments in favor of the
Planck distribution of the relic gravitational radiation (Weinberg, 1972, 1988;
Parker, 1976). We consider a more general density matrix ˆρ(HR) as a function of
the graviton energyHR. We introduce a parameter 1/b as an energy cutoff. In the
Gibbs state we obtain the Planck distribution

f PL
β (hc|k|) ≡ 〈C+(k)C(k)〉β = (exp(βch|k|)− 1)−1 (14)

We can see that effectively 1/β plays the role of the energy cutoff in the Planck
distribution. We shall sometimes identifyb with β in our discussion.

The correlation functions ofα (12) can be computed in the Fock space

Tr
(
αa

c (t, x)αa′
c′ (0, x′)ρ̂

) ≡ Gb(x, x′; t)aa′
cc′

= hκ

2π2c3

∫
dk

1

|k|δ
aa′
cc′ (k) cos(k(x− x′))

×
((

1

2
+ fb(hc|k|)

)
cos(c|k|t)− i

2
sin(c|k|t)

)
(15)
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where

δac
bd(k) =

∑
ζ

εa
b(k, ζ )εc

d(k, ζ ) (16)

We assume the transverse-traceless gauge forα. This means that we can choose
only spatial components ofα different from zero. In such a caseδ(k) has the form
(see Weinberg (1965) and Rubakov (1982))

δac
bd(k) = δ̃d

a δ̃
b
c + δ̃acδ̃

db− δ̃b
aδ̃

d
c (17)

where

δ̃ac(k) = δac− kakc/k2

The form (17) ofδ is determined by the conditionskbδ
bd
ac(k) = 0, δad

ac (k) = 0, and
δbc

ac(k) = 0.
In Eq. (15) fb is the graviton distribution. Our results for small time and small

space separations do not depend essentially on the form offb if

fb(k) = f̃ (bk)

and if f̃ decays sufficiently fast, for example,| f̃ (k)| ≤ Ak−6 for a largek. For
large time and large space separations the results depend on the singularity off̃ (k)
atk = 0. Some singular distributions in inflationary models are discussed in Allen
(1988), Allen and Romano (1999), de Garcia Maia (1993), and Sahni (1990).

An expectation value in the vacuumχ is a special case of Eq. (15) corre-
sponding to the limitb→∞

G∞(x, t ; x′, 0)≡< χ |α(t, x)α(0, x′)|χ >

= κc−4 hc

4π2

∫
dk

1

|k| cos(k(x− x′)) exp(−ic|k|t) (18)

We can see from Eqs. (15) and (18) that the first term on the r.h.s. of Eq. (15) de-
scribes the zero point density (vacuum fluctuations), whereas the second one (fb)
comes from the thermal gravitons in equilibrium with the environment. In gen-
eral, the vacuum fluctuations cannot be neglected. After a renormalization they
contribute to measurable effects. However, we show in the Appendix that renor-
malized vacuum fluctuations give a negligible contribution to the decoherence. We
subtract the vacuum fluctuations in Eq. (15) definingGth = Gb − G∞. After this
subtraction the correlation function becomes real. We can define a real random
field α with the correlation function〈

αa
b(x)αc

d(x′)
〉 = Gth(x − x′)ac

bd



P1: Vendor/FTK/FJQ/GCX P2: GDW/GCQ/GCO/GCQ/FGL/FJQ QC: GCQ

International Journal of Theoretical Physics [ijtp] PP088-298229 March 15, 2001 10:43 Style file version Nov. 19th, 1999

Gravitational Decoherence and EPR Correlations 989

where

Gth(x − x′)ac
bd = hκc−3(2π )−2

∫
dk |k|−1δac

bd(k) cos(k(x− x′))

× cos((x0− x′0)|k|) fb(c|k|h) (19)

The random fieldα is Gaussian in a linear approximation to gravity.

3. DECOHERENCE

Gravitons interact with all particles. There is no screening of the gravitation
force. Hence, the eventual decoherence effect of gravitons will be universal. We
define the partial density matrix (averaged over the gravitons)

ρt (x, x′) = TrR(〈x|ρ̂(HR)|ψt 〉〈ψt | x′〉) (20)

We takeψ in the form (2), whereφ is a slowly varying function. Hence, in
the leading order inh neglecting the dependence ofφ(x) onα

ψ(x) ≡ ψt (x) = exp

(
i

h
W

)
φ̃(x− x0P/P0) (21)

wherex0 = ct andφ(x0, x) = φ̃(x− x0P/P0) is the solution of the Klein–Gordon
equation with the initial conditioñφ. The average over gravitons takes the form
(we skip the tilde overφ)

ρt (x, x′) ≡ exp(−S(P)) exp(i P(x − x′)/h)φ

(
x− P

x0

P0

)
φ

(
x′ − P

x0

P0

)
= exp

(
i P(x − x′)/h

)
φ

(
x− P

x0

P0

)
φ

(
x′ − P

x0

P0

)
× exp

(
− 1

h2P2
0

∫ ct

0
PaPcG

cd
ab

(
s− s′

P0
P, s− s′

)
PbPd ds ds′

+ 1

2h2P2
0

∫ ct

0
PaPcG

cd
ab(x− x′ − (s− s′)P/P0, s− s′)Pd Pb ds ds′

+ 1

2h2P2
0

∫ ct

0
PaPcG

cd
ab(x

′ − x− (s− s′)P/P0, s− s′)PdP
b ds ds′

)
(22)

The form of the Green’s function comes from

〈α(q(τ, x), τ )α(q(s, x′), s)〉 = G

(
x− x′ + τ − s

P0
P, τ − s

)
(23)
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The trace in Eq. (21) can be calculated as an expectation value over the
Gaussian random fieldα (or expressed in the operator formalism by means of the
time-ordered products in the Fock space)

〈expiαJ〉 = exp

(
− 1

2
JGJ

)
where the Green functionsG depend on the state under consideration (See Haba
and Kleinert, 2001). In particular, in the thermal state with subtracted vacuum
fluctuations,G→ Gth. With vacuum fluctuations,Gth→ Gβ = Gth+ G∞ and
the time-ordering leads subsequently to the replacementG∞ → GF = i1F (in
the notation of Bjorken and Drell, 1965). The part

∫
GF dy dy contains infinities

when the paths intersect. After a renormalization the remaining expression gives
a negligible contribution to the decoherence (see the Appendix).

If there areN particles then

Wt (x1, . . . , xN) =
N∑

j=1

(
P( j )x( j )+ 1

P0( j )
P( j )cP( j )a

×
∫ ct

0
αc

a(x( j )+ sP( j )P0( j )−1, ct − s) ds

)
and the density matrix evolves as follows

ρt (x, x′) ≡ exp(−S(P)) exp

(
i

N∑
j=1

P( j )(x( j )− x′( j ))/h

)

×φ
(

x− P
x0

P0

)
φ

(
x′ − P

x0

P0

)

= exp

(
i

N∑
j=1

P( j )(x( j )− x′( j ))/h

)
φ

(
x− P

x0

P0

)
φ

(
x′ − P

x0

P0

)

× exp

(
− 1

2h2

∫ ct

0

N∑
j ,k=1

P( j )a P( j )cP0( j )−1

×
(

Gcd
ab

(
x( j )− x(k)+ s

P0( j )
P( j )− s′

P0(k)
P(k), s− s′

)
+Gcd

ab

(
x′( j )− x′(k)+ s

P0( j )
P( j )− s′

P0(k)
P(k), s− s′

)
−Gcd

ab

(
x′( j )− x(k)+ s

P0( j )
P( j )− s′

P0(k)
P(k), s− s′

)
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−Gcd
ab

(
x( j )− x′(k)+ s

P0( j )
P( j )− s′

P0(k)
P(k), s− s′

))
× Pb(k)Pd(k)P0(k)−1 ds ds′

)
(24)

wherex− x0P/P0 under the argument ofφ is understood as a vector with com-
ponentsx( j )− x0P( j )/P0( j ).

Let us first consider a single particle and assume thatt is small so that we
can neglect the integration overs ands′ inside the cosine. Let us chooseP as the
z-axis and denote the coordinates ofx− x′ = y = (cosα sinϑ, sinα sinϑ, cosϑ).
Then, withk = |k|(cosφ sinθ , sinφ sinθ , cosθ )

PP
(∫ ct

0
Gth((s− s′)P/P0, s− s′) ds ds′

−1

2

∫ t

0
Gth(x− x′ + (s− s′)P/P0, s− s′) ds ds′

−1

2

∫ t

0
Gth(x′ − x+ (s− s′)P/P0, s− s′) ds ds′

)
PP

= t2PP(Gth(0, 0)− Gth(y, 0))PP

= |P|4hκc−3t2π−2
∫ ∞

0
dk k

∫ 1

0
da
∫ 2π

0
dφ
∫ π

0
dθ sinθ I (θ )

×(1− cos(ka|y|2)) f̃ (bhck) (25)

where

2 = cosφ sinθ cosα sinϑ + sinφ sinθ sinα sinϑ + cosθ cosϑ (26)

and

I (θ ) = |P|−4(P2− (Pk)2k−2)2 = (1− cos2 θ )2

For smally the integration overφ gives∫
dφ 22 = π

2
(sin2 ϑ + cos2 ϑ cos2 θ )

Hence, expanding iny we obtain

ρt (x, x′) = exp

(
− (A+ B sin2 ϑ)

(
h

|P|
)−2

l−2
d B|x− x′|2(LPL/ ld B)2(Pt/M)2

)
(27)



P1: Vendor/FTK/FJQ/GCX P2: GDW/GCQ/GCO/GCQ/FGL/FJQ QC: GCQ

International Journal of Theoretical Physics [ijtp] PP088-298229 March 15, 2001 10:43 Style file version Nov. 19th, 1999

992 Haba

whereA > 0 andB > 0 are constants of order 1,ld B = hcb is de Broglie length
at temperatureT (for b = β). Then, h

|P| is particle’s wave length at the momentum
P, LPL =

√
hκ/c3 is the Planck length.

For N particles if t is small and the difference in coordinates in Eq. (24) is
small then expanding int and in the coordinates we obtain (assumingP0 ' Mc)

ρt (x, x′) ≡ exp (−S(P)) exp

(
i

N∑
j=1

P( j )(x( j )− x′( j ))/h

)

×φ
(

x− P
x0

P0

)
φ

(
x′ − P

x0

P0

)

= exp

(
i

N∑
j=1

(P( j )(x( j )− x′( j ))/h)φ

(
x− P

x0

P0

)
φ

(
x′ − P

x0

P0

)

× exp

(
− t2

2h2M2c2

N∑
j ,l=1

((x( j )− x(l ))γ (P( j ), P(l ))(x( j )− x(l ))

+ (x′( j )− x′(l ))γ (P( j ), P(l ))(x′( j )− x′(l ))

+ (x′( j )− x(l ))γ (P( j ), P(l ))(x′( j )− x(l ))

+ (x( j )− x′(l ))γ (P( j ), P(l ))(x( j )− x′(l )))

)
(28)

where

(x( j )− x(l ))γ (P( j ), P(l ))(x( j )− x(l ))

=
∫

dk |k|−1 fb(chk)(k(x( j )− x(l )))2P( j )P(l )δ(k)P( j )P(l )

The formula simplifies if all the momenta are equal (and nonrelativistic, i.e.,P0 '
Mc) then

ρt (x, x′) = exp

(
iP

N∑
j=1

(x( j )− x′( j ))/h

)
φ

(
x− P

x0

P0

)
φ

(
x′ − P

x0

P0

)

× exp

(
− t2

2h2M2c2
|P|4

N∑
j ,k=1

((
A+ B sin2 ϑ jk

)|x( j )− x(k)|2

+ (A+ B sin2 ϑ ′′jk)|x′( j )− x′(k)|2+ (A+ B sin2 ϑ ′jk)|x′( j )− x(k)|2

+ (A+ B sin2 ϑ ′k j )|x( j )− x′(k)|2)) (29)
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whereϑ jk is the angle betweenP andx( j )− x(k), ϑ ′′jk is the angle betweenP and
x′( j )− x′(k), andϑ ′jk is the angle betweenP andx( j )− x′(k).

To obtain a simple bound on the density matrix (29), let us assume addi-
tionally that the particles have approximately the same positionx( j ) = x(k) = x
andx′( j ) = x′(k) = x′. One can achieve this by choosing in the formula

〈A〉 = (Trρ)−1Tr (ρA)

the observableA, which is of the form|χ >< χ | with

χ (x(1), . . . , x(N)) = exp

(
i P
∑

x( j )/h

)
N−1∏
j=1

exp

(
− 1

2ε
(x( j )− x(N))2

)
Then, we obtain the bound

|ρt (x, x′)| ≤
∣∣∣∣φ(x− P

x0

P0

)
φ

(
x′ − P

x0

P0

)∣∣∣∣
exp

(
−N t2

2h2M2c2 |P|4(A+ B sin2 ϑ ′)|x− x′|2
)

For a large time and large|x− x′| we can obtain explicit formulas forGth if
y = x− x′‖P. We apply Eq. (22) and the formula

A−1 sin A =
∫ 1

0
da cos(a A)

We perform the integral over time first. Then, for nonrelativistic momenta

S(P) = 2|P|4 1

M2h

κ

c5π

∫ 1

0
da
∫ ∞

0

dk

k

∫ π

0
dθ sinθ I (θ ) fb(hck)

× (2(1− cos(tck))− 2 cos(ka cosθ |y|)
+ cos(ka cosθ |y| + ckt)+ cos(−ka cosθ |y| + ckt)) (30)

For ct À |y| we can neglect the terms witht under the cosines in Eq. (30). There
remains

S= 4

M2h

κ

c5π
|P|4

∫ 1

0
da
∫ ∞

0

dk

k

∫ π

0
dθ

× sinθ I (θ ) f̃ (bhck)(1− cos(ka cosθ |y|)). (31)

If |y| ¿ ld B is small and|P| is small in comparison toMc (andt is large) then the
integral (31) gives

ρt (x, x′) ≈ exp
(−AM−2c−2h−2|P|4L2

PLl
−2
d B|x− x′|2) (32)

with a certain constantA of order 1.
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For a small timet and a large|y|we omit the terms withy in the integral (30).
There remains

S(P) = 4|P|4 1

M2h

κ

c5π

∫ 1

0
da
∫ ∞

0

dk

k

∫ π

0
dθ sinθ I (θ ) fb(hck)(1− cos(tck))

Hence, for|y| À ldBÀ ct we obtain

ρt ≈ exp

(
− A(LPL/ ld B)2

(
h

|P|
)−2

(Pt/M)2

)
(33)

Let us consider the large|y| in Eq. (30) assuming thatt is also large. Now,
the behaviour ofS(P) for a large time depends essentially on the energy dis-
tribution. We restrict the discussion to the Planck distribution. We apply the
formula

1− cosw = w
∫ 1

0
dγ sin(γw)

and the formula 3.911 of Gradstein and Ryzhik (1971)∫ ∞
0

dusin(au)(exp(βu)− 1)−1 = π

2β
coth

(
πa

β

)
− 1

2a

For |y| À ct À ldB we neglect the oscillatory terms depending ony. Then, we
obtain

S(P) = 2
ct

M2h2 |P|4
κ

c4
h/π

∫ 1

0
dγ

∫ ∞
0

dk
∫ π

0
dθ sinθ I (θ )

× sin(tckγ )(exp(βhck)− 1)−1

= κ

M2c5h2 |P|4h/π
∫ t

0
dγ

(
π

βh
coth

(
πγ

βh

)
− 1

γ

)
= κ

M2c5h2 |P|4h/π ln

(
β h

π t
sinh

(
π t

β h

))
≈ κ |P|

4

M2c5
h−3 ct

ldB
= L2

PL
|P|2
M2c3

(h|P|−1)−2 ct

ldB
(34)

For ct À |y| À ldB and intermediate|y| we neglect the terms witht under the
difference of cosines in Eq. (30). There remains

S(P) = 2c−5 κ

M2h2 |P|4h/π
∫ 1

0
da
∫ ∞

0

dk

k

∫ π

0
dθ sinθ I (θ )

× (exp(βhck)− 1)−1(1− cos(ka cosθ |y|)) (35)
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Then, thek-integral gives

S= κ

M2c5h2 |P|4h/cπ
∫ 1

0
da

(∫ 1

0
dγ

∫ π

0
d cosθ I (θ )

×
(
πa cosθ |y|

βhc
coth

(
πa cosθ |y|γ

βhc

)
− 1

γ

))
≈ 2h−1κ

|P|4
2M2c5

∫ π
2

0
d cosθ I (θ ) cosθ

|y|
ldB

= |P|2
12M2c2

L2
PL(h|P|−1)−2 |y|

ldB
(36)

for a large|y| such thatct À |y| À ldB.
If (as in Eq. (34))

ρt (x, x′) ' exp(i P(x− x′)/h)− at|P|4)

then

∂tρ = −a[P2, [P2, ρ]]

with

a = c

ldB

L2
PL

h2M2c2

This could be a version of a primary state diffusion equation (Diosi, 1989; Milburn,
1991; Percival and Struntz, 1997) causing decoherence and the wave function
reduction. In our interpretation the diffusion results from the gravitational
background (for a detailed study of this equation see Haba and Kleinert, 2001).

Note that the formula (34) comes out from the approximation

Gth(x, x′, s− s′) = cL2
PL

ldB
δ(s− s′)

which could have been justified by an approximationfPL ≈ l−1
dB . If α is approxi-

mated by the white noise then Eq. (1), the Klein–Gordon equation, takes the form
of a random Schr¨odinger equation (with the Ansatzψ = exp(iPx/h)φ)

∂tφ = − i

2hM
P2φ − LPL

i

hM
α j l Pj Plφ

whereP= −i h∇.
Note that without the assumptionf ∼ 1/k for small k (true for the Planck

distribution) we would not obtain Eq. (34) but rathertγ . Then, there would be no
diffusion equation.

For real systems there are stronger sources of the decoherence than the grav-
itational one, for example, a scattering on relic photons, sun photons, and air
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molecules. However, in principle we can screen a system against these distur-
bances. The gravitons effect is universal, with no possibility of screening. It is
small for elementary particles but as we have shown, the decoherence rate increases
at least asN for a cluster ofN particles so it becomes efficient for macroscopic
bodies. We suggest that the gravitational decoherence could be used as a universal
mechanism explaining the emergence of the classical world from the quantum
microphysics.

4. THE DISAPPEARANCE OF THE ENTANGLEMENT

We consider the Einstein–Podolsky–Rosen wave function of two particles (Einstein
et al. (1935) and Cohen (1997))

ψ(x(1), x(2))= exp

(
i

h
P(1)x(1)+ i

h
P(2)x(2)− (x(1)− x(2)− a)2/2ε

)
(37)

This function approximates EPRδ-function whenε → 0. In the momentum space

ψ̃(k(1), k(2)) = δ(P(1)+ P(2)− k(1)− k(2))

× exp

(
− ε

2h2 (k(1)− P(1))2+ i

h
a(P(1)− k(1))

)
(38)

Hence, a measurement ofk(1) determinesk(2)= −k(1)+ P(1)+ P(2).
We prepare the state (37) att = 0 and calculate its time evolution in the en-

vironment of gravitons (that remain unobserved). As a result we obtain the mixed
stateρt . For an interpretation of this mixed state it is useful to define the Wigner
function (Wigner, 1932)

Wt (k(1), k(2);q(1), q(2))

= (2πh)−6
∫

dy(1)dy(2)ρt (q+ y/2, q− y/2) exp(i y(1)k(1)/h+ i y(2)k(2)/h)

(39)
At t = 0 we have

W(k(1), k(2);q(1), q(2))

= (2πε)−3/2 exp

(
−1

ε
(q(1)− q(2)− a)2

)
× δ(P(1)+ P(2)− k(1)− k(2))

If we insert the result (29) (for two particles) into Eq. (39)

ρt ≈ exp

(
− t2

20
(y(1)2+ y(2)2)

)
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with a (momentum-dependent)0 determined by Eq. (29), then we obtain

Wt (k(1), k(2);q(1), q(2))

= (2πε)−3/2 exp

(
−1

ε
(q(1)− q(2)− (P(1)− P(2))

t

M
− a)2

)
(2π t2/0)−3/2

× exp

(
− 0

4t2
(P(1)+ P(2)− k(1)− k(2))2

)
exp

(
− 1

4

(
t2

0
+ 1

ε

)−1

× (P(1)− P(2)− k(1)+ k(2))2
)

(40)

The result (40) means that the quantum coherence is lost in time≈ √0 after
the state preparation. From Eq. (29) it follows that0 ≈ 1/

√
N; hence, the decoher-

ence time can be short for a largeN. The measurement ofk(1) allows to determine
k(2) with an unavoidable error that grows with time (hence also with the space
separation of particles). The error has a nonzero lower bound and a finite upper
bound, because according to Eq. (34) the decay ofρt (x, x′) as |x− x′| → ∞ is
time independent.

APPENDIX

When the operator formalism is applied, then the formula (22) results from a
representation of the density matrix expectation values by the expectation values of
the time-ordered products of quantum fields in the Fock space. We use the following
conventions of Bjorken and Drell (1965) (T denotes the time-ordered product)

〈0|T(α(x′)α(x))|0〉 = i1F(x′ − x)

〈0|T(exp(i Jα))|0〉 = exp

(
− i

2
J1FJ

)
Then, in our notation

GF(x′ − x) = i1F(x′ − x)

In terms of Fourier integrals

1F(x′ − x) = −i
1

2
(2π )−3

∫
dk |k|−1 cos(k(x′ − x)) exp(−ic|k||t ′ − t |)

We perform calculations with an ultraviolet cutoff3. Then, we obtain (for sim-
plicity of the formulas we make an approximationP0/Mc ' 1)

SF = 2
1

M2h2 PP
(∫ t

0
GF((s− τ )P/M, s− τ ) ds dτ

−
∫ t

0
GF(x− x′ + (s− τ )P/M, s− τ ) ds dτ
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−
∫ t

0
GF(x′ − x+ (s− τ )P/M, s− τ ) ds dτ )

)
PP

= hc
1

2
(2π )−3(−i )ct

∫
dk (P2− (Pk)2k−2)2

× (c2|k|2− (Pk)2/M2)−1(1− cos(k(x′ − x)))

+ hc
1

2
(2π )−3

∫
dk (P2− (Pk)2k−2)2|k|−1((c|k| + Pk/M)−2

× (1− exp(−i t (c|k| + Pk/M)))

+ (c|k| − Pk/M)−2(1− expi t (c|k| − Pk/M)))(1− cos(k(x′ − x))) (41)

With an ultraviolet cutoff|k| ≤ 3 on the wave number,|exp(−SF(P))| behaves as
follows: If t is large and|x− x′| small (3|x− x′| ≤ 1/2) then

|exp(−SF(P))| ≈ exp(−a|x− x′|2)

If |x− x′| is large andt small (|ct|3 ≤ 1/2) then

|exp(−SF(P))| ≈ exp(−a|t |2)

If both t and|x− x′| are small then

|exp(−SF(P))| ≈ exp(−a2|t |2|x− x′|2)

However, in these formulasa ≈ 32. Hence, such a behaviour would be valid only
for a very smallt or |x− x′|. In fact, the cutoff sets a length scale3−1 within
which the variation of time and space coordinates should be considered. Beyond
this scale the real variation ofSF is logarithmic. We can see this from the integral
entering the formula (39)∫ 3

0

dk

k
(1− cosckt) =

∫ 1

0

dk

k
(1− cosk)+

∫ ct3

1

dk

k
(1− cosk)

= const+ ln(ct3) (42)

Hence, the variation ofSF is slow in comparison to the black body partS (that
behaves in the same way but for larger time and space intervals). It follows that
the termal partGth of the Green’s function determines the leading behaviour of
the density matrix.

If the ultraviolet cutoff is removed and an infinite constant independent oft and
x is subtracted then the remaining part of exp(−S) varies slowly (logarithmically)
for largert and|x− x′|.

It is sometimes suggested that quantum gravity sets an ultraviolet cutoff
k ≤ 1/LPL, that is,3 = 1/LPL. In such a case the part corresponding to the zero-
temperature Green’s functionGF determines the behaviour of the density matrix
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only for |x− x′| ≤ LPL andc|t | ≤ LPL. At finite temperature the thermal Green’s
function behaves in the same way for a larger space and time intervals determined
by ldB, which becomes the relevant length scale for decoherence.
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